
Cosmo: a concurrent separation logic for the
weak memory model of Multicore OCaml

Glen Mével

PhD defense
December 14, 2022

LMF & Inria Paris

An introduction to weak-memory
concurrency

Movix

Family Cosmo shares a Movix account

Movix’ policy: simultaneous accesses =⇒ account canceled

Solution: Family Cosmo has established a protocol:

• a totem in the living room, that anyone can borrow

• to watch Movix, one must have borrowed the totem

1

Movix

Family Cosmo shares a Movix account

Movix’ policy: simultaneous accesses =⇒ account canceled

Solution: Family Cosmo has established a protocol:

• a totem in the living room, that anyone can borrow

• to watch Movix, one must have borrowed the totem

1

Movix

Family Cosmo shares a Movix account

Movix’ policy: simultaneous accesses =⇒ account canceled

Solution: Family Cosmo has established a protocol:

• a totem in the living room, that anyone can borrow

• to watch Movix, one must have borrowed the totem

1

Movix: mutual exclusion

2

Movix password

Family Cosmo’s members can change the password

One day...

Alice had changed the password the day before, Bob didn’t know

Movix’ security policy: wrong password =⇒ IP blocked

3

Movix password

Family Cosmo’s members can change the password

One day...

Alice had changed the password the day before, Bob didn’t know

Movix’ security policy: wrong password =⇒ IP blocked

3

Movix password

Family Cosmo’s members can change the password

One day...

Alice had changed the password the day before, Bob didn’t know

Movix’ security policy: wrong password =⇒ IP blocked

3

Movix password

Family Cosmo’s members can change the password

One day...

Alice had changed the password the day before, Bob didn’t know

Movix’ security policy: wrong password =⇒ IP blocked 3

Movix: takeaway

Mutual exclusion is not enough

Alice and Bob have diverging views of their common password

Alice must transmit her (more up-to-date) knowledge to Bob

Solution: write the password on the totem

4

Movix: takeaway

Mutual exclusion is not enough

Alice and Bob have diverging views of their common password

Alice must transmit her (more up-to-date) knowledge to Bob

Solution: write the password on the totem

4

Weak memory models

Weak memory models:
multicore architecture, shared memory
each thread has its own view of the state of the shared memory

• example: C11

• example: Java

• example: Multicore OCaml (“OCaml 5”)
[Dolan et al, PLDI 2018, Bounding data races in space and time]

5

Weak memory models

Weak memory models:
multicore architecture, shared memory
each thread has its own view of the state of the shared memory

• example: C11

• example: Java

• example: Multicore OCaml (“OCaml 5”)
[Dolan et al, PLDI 2018, Bounding data races in space and time]

5

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

• losing a paid Movix account

• killing patients: Therac-25 radiotherapy machine

• ...

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one

6

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

• losing a paid Movix account

• killing patients: Therac-25 radiotherapy machine

• ...

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one

6

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

• losing a paid Movix account

• killing patients: Therac-25 radiotherapy machine

• ...

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one

6

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

• losing a paid Movix account

• killing patients: Therac-25 radiotherapy machine

• ...

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one

6

This work

My aim:

• verifying

• fine-grained concurrent programs

• in the setting of Multicore OCaml

My contributions:

• Cosmo, a concurrent separation logic with views [ICFP 2020]

• case studies: locks [ICFP 2020], concurrent queue [ICFP 2021]

7

Verifying SC concurrent programs
with Concurrent Separation Logic

Specifying a program [Hoare, 1969]

Hoare triple: {Pre} e {Post}

• e: program code
• Pre: precondition (logical assertion about the computer state)
• Post: postcondition (ditto)

“If we run e from a state that satisfies Pre, and if it terminates,
then it ends in a state that satisfies Post.”

Pre and Post are stated in Separation Logic:

• an assertion represents the ownership of a resource
• the separating conjunction P ∗ Q asserts ownership of two

distinct resources P and Q

• in general, P ̸⇒ P ∗ P

8

Specifying with Separation Logic [Reynolds 1999; O’Hearn 2007; Iris 2015; ...]

Hoare triple: {Pre} e {Post}

• e: program code
• Pre: precondition (logical assertion about the computer state)
• Post: postcondition (ditto)

“If we run e from a state that satisfies Pre, and if it terminates,
then it ends in a state that satisfies Post.”

Pre and Post are stated in Separation Logic:

• an assertion represents the ownership of a resource
• the separating conjunction P ∗ Q asserts ownership of two

distinct resources P and Q

• in general, P ̸⇒ P ∗ P

8

Resources and locks

Portions of memory are ownable resources

• example: a⇝ "azerty"
“Movix account a, whose current password is "azerty"”

We can guard such resources by using a lock (like the totem)

Two operations for a lock lk guarding a resource R :

• acquire lk

grants R : we become its unique owner

• release lk

reclaims R : we give it back and stop owning it

Formal specification?

9

Resources and locks

Portions of memory are ownable resources

• example: a⇝ "azerty"
“Movix account a, whose current password is "azerty"”

We can guard such resources by using a lock (like the totem)

Two operations for a lock lk guarding a resource R :

• acquire lk

grants R : we become its unique owner

• release lk

reclaims R : we give it back and stop owning it

Formal specification?

9

Specification of a lock

isLock lk R ⊢

if lk is a lock that guards R , then

{True} acquire lk {R}

acquiring lk assumes nothing and grants R

{R} release lk {True}

releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10

Specification of a lock

isLock lk R ⊢ if lk is a lock that guards R , then{True} acquire lk {R} acquiring lk assumes nothing and grants R

{R} release lk {True} releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10

Specification of a lock

isLock lk R ⊢ if lk is a lock that guards R , then{True} acquire lk {R} acquiring lk assumes nothing and grants R

{R} release lk {True} releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10

The spin lock

A spin lock implements a lock using a Boolean reference:

let release lk =
lk := false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

Specification of operations used by the spin lock:

{x ⇝ v }
x := v ′

{x ⇝ v ′ }

{x ⇝ v }
CAS x v1 v2

{if retthen x ⇝ v2 ∗ v = v1

else x ⇝ v
}

11

The spin lock

A spin lock implements a lock using a Boolean reference:

let release lk =
lk := false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

Specification of operations used by the spin lock:

{x ⇝ v }
x := v ′

{x ⇝ v ′ }

{x ⇝ v }
CAS x v1 v2

{if retthen x ⇝ v2 ∗ v = v1

else x ⇝ v
}

11

The spin lock

A spin lock implements a lock using a Boolean reference:

let release lk =
lk := false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

Specification of operations used by the spin lock:

{x ⇝ v }
x := v ′

{x ⇝ v ′ }

{x ⇝ v }
CAS x v1 v2

{if retthen x ⇝ v2 ∗ v = v1

else x ⇝ v
}

11

Verifying the spin lock in Concurrent Separation Logic [Iris, 2015]

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

isLock lk R ⊢
// release:
{R}

{lk ⇝_ ∗ R}

lk := false

{lk ⇝ false ∗ R}

{True}

isLock lk R ⊢
// try_acquire:
{True}

{lk ⇝ b ∗ (b = false ⇒ R)}

CAS lk false true


if ret

then lk ⇝ true ∗ R

else lk ⇝ b ∗ (b = false ⇒ R)


if ret

then isLock lk R ∗ R

else isLock lk R



{(ret = true ⇒ R)}
12

Verifying the spin lock in Concurrent Separation Logic [Iris, 2015]

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

isLock lk R ⊢

// release:
{isLock lk R ∗ R}

{lk ⇝_ ∗ R}

lk := false

{lk ⇝ false ∗ R}

{isLock lk R}

isLock lk R ⊢

// try_acquire:
{isLock lk R}

{lk ⇝ b ∗ (b = false ⇒ R)}

CAS lk false true


if ret

then lk ⇝ true ∗ R

else lk ⇝ b ∗ (b = false ⇒ R)


if ret

then isLock lk R ∗ R

else isLock lk R



{isLock lk R ∗ (ret = true ⇒ R)}
12

Verifying the spin lock in Concurrent Separation Logic [Iris, 2015]

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

isLock lk R ⊢

// release:
{isLock lk R ∗ R}
{lk ⇝_ ∗ R}
lk := false
{lk ⇝ false ∗ R}
{isLock lk R}

isLock lk R ⊢

// try_acquire:
{isLock lk R}
{lk ⇝ b ∗ (b = false ⇒ R)}
CAS lk false true
if ret

then lk ⇝ true ∗ R

else lk ⇝ b ∗ (b = false ⇒ R)


if ret

then isLock lk R ∗ R

else isLock lk R


{isLock lk R ∗ (ret = true ⇒ R)}

12

Verifying Multicore OCaml programs
with Cosmo

Using a lock

Example of using a lock lk to guard accesses to pw :

initially, pw = 0
initially, lk = false

acquire lk
pw := 1 acquire lk
release lk B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Using a lock

Example of using a lock lk to guard accesses to pw :

initially, pw = 0
initially, lk = false

acquire lk
pw := 1 acquire lk
release lk B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 acquire lk
release lk B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message in Multicore OCaml

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1), (false, 0)

Traditional model of concurrency violated

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

Passing a message in Multicore OCaml

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1), (false, 0)

Traditional model of concurrency violated

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)

13

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14

Synchronization through atomic references

The left thread must transmit its view to the right thread
=⇒ need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, lk :={at} true

pw := 1 A := !{at} lk
lk :={at} false B := !pw

Specification of atomic references?

15

Synchronization through atomic references

The left thread must transmit its view to the right thread
=⇒ need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, lk :={at} true

pw := 1 A := !{at} lk
lk :={at} false B := !pw

Specification of atomic references?

15

Synchronization through atomic references

The left thread must transmit its view to the right thread
=⇒ need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, lk :={at} true

pw := 1 A := !{at} lk
lk :={at} false B := !pw

Specification of atomic references?

15

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}
16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}

views
views are mathematical objects;

they enjoy a lattice structure

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}
16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}

current view

↑U : “the current view contains U”

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}

current view

↑U : “the current view contains U”

release

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}

current view

↑U : “the current view contains U”

acquire

16

The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference:

let release lk =
lk :={at} false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b

,U

. lk⇝at b ∗ (b = false ⇒ R

@U

)

R may be subjective!

17

The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference:

let release lk =
lk :={at} false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b

,U

. lk⇝at b ∗ (b = false ⇒ R

@U

)

R may be subjective!

17

The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference:

let release lk =
lk :={at} false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b,U . lk⇝at(b,U) ∗ (b = false ⇒ R@U)

R may be subjective!
objective part of an assertion

R @ U : “R where the current view is fixed to U”

17

Verifying the spin lock in Multicore OCaml

isLock lk R ≜ ∃b,U . lk⇝at(b,U) ∗ (b = false ⇒ R@U)

// release:
{ isLock lk R ∗ R}
{ lk ⇝at _ ∗ R}{
∃U . lk ⇝at _ ∗

︷ ︸︸ ︷
↑U ∗ R @ U

}
lk :=at false
{ lk ⇝at (false,U) ∗ R @ U}
{ isLock lk R}

// try_acquire:
{isLock lk R}
{lk ⇝at (b,U) ∗ (b = false ⇒ R @ U)}
CAS lk false true
if ret

then lk ⇝at (true,U) ∗ ↑U ∗ R @ U︸ ︷︷ ︸
else . . .


if ret

then isLock lk R ∗ R

else . . .


{isLock lk R ∗ (ret = true ⇒ R)}

splitting rule

P ⇐⇒ ∃U . P @ U︸ ︷︷ ︸
objective

∗ ↑U︸︷︷︸
subjective

18

Methodology

A method for proving correctness under weak memory:

1. Start with the invariant under sequential consistency;

2. Identify how information flows between threads;
• i.e. where are the synchronization points;

3. Refine the invariant with corresponding views.

19

Case study: a multiple-producer
multiple-consumer queue

A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20

A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20

A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20

A specification for concurrent queues in SC

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue q [v0, ..., vn−1, v] ⟩

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1, ..., vn−1] ∗ 1 ≤ n ∗ v = v0⟩

• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

21

A specification for concurrent queues in SC

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue q [v0, ..., vn−1, v] ⟩

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1, ..., vn−1] ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

21

A specification for concurrent queues in SC

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue q [v0, ..., vn−1, v] ⟩

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1, ..., vn−1] ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

21

A specification for concurrent queues in SC

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue q [v0, ..., vn−1, v] ⟩

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1, ..., vn−1] ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

21

A specification for concurrent queues in weak memory

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , ..., vn−1]

∗ ↑ V

⟩
enqueue q v

⟨λ(). IsQueue q [v0 , ..., vn−1 , v] ⟩

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , v1 , ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1 , ..., vn−1]

∗ ↑ V0

∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

=⇒ must be objective
• The queue transfers resources =⇒ must transfer views

22

A specification for concurrent queues in weak memory

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , ..., vn−1]

∗ ↑ V

⟩
enqueue q v

⟨λ(). IsQueue q [v0 , ..., vn−1 , v] ⟩

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , v1 , ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1 , ..., vn−1]

∗ ↑ V0

∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
=⇒ must be objective

• The queue transfers resources =⇒ must transfer views

22

A specification for concurrent queues in weak memory

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , ..., vn−1]

∗ ↑ V

⟩
enqueue q v

⟨λ(). IsQueue q [v0 , ..., vn−1 , v] ⟩

⟨n, v0 , ..., vn−1 .

IsQueue q [v0 , v1 , ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1 , ..., vn−1]

∗ ↑ V0

∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
=⇒ must be objective

• The queue transfers resources =⇒ must transfer views 22

A specification for concurrent queues in weak memory

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), ..., (vn−1,Vn−1)] ∗ ↑ V⟩
enqueue q v

⟨λ(). IsQueue q [(v0,V0), ..., (vn−1,Vn−1), (v ,V)] ⟩

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), (v1,V1), ..., (vn−1,Vn−1)] ⟩
dequeue q

⟨λv . IsQueue q [(v1,V1), ..., (vn−1,Vn−1)] ∗ ↑ V0 ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
=⇒ must be objective

• The queue transfers resources =⇒ must transfer views 22

A specification for concurrent queues in weak memory

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), ..., (vn−1,Vn−1)] ∗ ↑ V⟩
enqueue q v

⟨λ(). IsQueue q [(v0,V0), ..., (vn−1,Vn−1), (v ,V)] ⟩

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), (v1,V1), ..., (vn−1,Vn−1)] ⟩
dequeue q

⟨λv . IsQueue q [(v1,V1), ..., (vn−1,Vn−1)] ∗ ↑ V0 ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
=⇒ must be objective

• The queue transfers resources =⇒ must transfer views 22

A specification for concurrent queues in weak memory

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), ..., (vn−1,Vn−1)] ∗ ↑ V⟩
enqueue q v

⟨λ(). IsQueue q [(v0,V0), ..., (vn−1,Vn−1), (v ,V)] ⟩

⟨n, (v0,V0), ..., (vn−1,Vn−1).

IsQueue q [(v0,V0), (v1,V1), ..., (vn−1,Vn−1)] ⟩
dequeue q

⟨λv . IsQueue q [(v1,V1), ..., (vn−1,Vn−1)] ∗ ↑ V0 ∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
=⇒ must be objective

• The queue transfers resources =⇒ must transfer views 22

Comparison with refinement in weak memory

Refinement is another approach to specifying the queue:
“this queue can replace a sequential queue guarded by a lock”

Shortcoming of the refinement spec:
the lock induces synchronization between all operations

Our spec is more permissive:
no guaranteed synchronization from dequeuer to enqueuer

Allows for more relaxed implementations... like the one we verified

23

Comparison with refinement in weak memory

Refinement is another approach to specifying the queue:
“this queue can replace a sequential queue guarded by a lock”

Shortcoming of the refinement spec:
the lock induces synchronization between all operations

Our spec is more permissive:
no guaranteed synchronization from dequeuer to enqueuer

Allows for more relaxed implementations... like the one we verified

23

Conclusion

Contributions

• BaseCosmo: A low-level program logic for the weak memory
model of Multicore OCaml [ICFP 2020]

• closely reflects the operational semantics

• Cosmo: A higher-level logic, based on a notion of views
[ICFP 2020]

• easier to use, cannot reason about racy programs

• Verification of locks and mutual exclusion algorithms [ICFP 2020]

• Specification and verification of a non-trivial lock-free queue
[ICFP 2021]

• demonstrates the expressivity of Cosmo
• methodology: add views wherever synchronization is relevant

• Mechanized in Coq (Iris)

24

Takeaways

The logic of views enables concise and natural reasoning about how
threads synchronize

Enables fine-grained specifications

Don’t hide views: make them apparent in specifications!

Prove specifications with the splitting rule

Fits naturally into a Hoare/Concurrent Separation Logic framework

25

Model of the logic in Iris

Assertions are predicates on views:

vProp ≜ view −→ iProp

↑U0 ≜ λU . U0 ⊑ U
P ∗ Q ≜ λU . P U ∗ Q U

P −∗ Q ≜ λU .

∀U ⊒ U1.

P U −∗ Q U

We equip a language-with-view with an operational semantics:

exprWithView ≜ expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e φ ≜ λU .

∀U ⊒ U1.

validU −∗ WP ⟨e,U⟩
(
λ
〈
v ,U ′〉 . validU ′ ∗ φ v U ′)

where φ : val → vProp

Model of the logic in Iris

Assertions are monotonic predicates on views:

vProp ≜ view mon−→ iProp

↑U0 ≜ λU . U0 ⊑ U
P ∗ Q ≜ λU . P U ∗ Q U

P −∗ Q ≜ λU1. ∀U ⊒ U1. P U −∗ Q U

We equip a language-with-view with an operational semantics:

exprWithView ≜ expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e φ ≜ λU1. ∀U ⊒ U1.

validU −∗ WP ⟨e,U⟩
(
λ
〈
v ,U ′〉 . validU ′ ∗ φ v U ′)

where φ : val → vProp

Model of the logic in Iris

Assertions are monotonic predicates on views:

vProp ≜ view mon−→ iProp

↑U0 ≜ λU . U0 ⊑ U
P ∗ Q ≜ λU . P U ∗ Q U

P −∗ Q ≜ λU1. ∀U ⊒ U1. P U −∗ Q U

We equip a language-with-view with an operational semantics:

exprWithView ≜ expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e φ ≜ λU1. ∀U ⊒ U1.

validU −∗ WP ⟨e,U⟩
(
λ
〈
v ,U ′〉 . validU ′ ∗ φ v U ′)

where φ : val → vProp

Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{x ⇝na v ∗ P }
x :=na v ′

{λ(). x ⇝na v
′ ∗ P}

Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{x ⇝na v ∗ P — holds at the thread’s current view }
x :=na v ′

{λ(). x ⇝na v
′ ∗ P — holds at the thread’s now extended view}

Key idea: decomposing subjective assertions

Decompose subjective assertions:

P ⇐⇒ ∃U . P @ U︸ ︷︷ ︸
objective

∗ ↑U︸︷︷︸
subjective

P @ U =⇒ Objectively(↑U −∗ P)

ObjectivelyQ ⇐⇒ (∀U . Q @ U) ⇐⇒ Q @∅

Share parts via distinct mechanisms:

• P @ U : via an objective invariant

• ↑U : via synchronization offered by the memory model

Key idea: decomposing subjective assertions

Decompose subjective assertions:

P ⇐⇒ ∃U . P @ U︸ ︷︷ ︸
objective

∗ ↑U︸︷︷︸
subjective

P @ U ⇐⇒ Objectively(↑U −∗ P)

ObjectivelyQ ⇐⇒ (∀U . Q @ U) ⇐⇒ Q @∅

Share parts via distinct mechanisms:

• P @ U : via an objective invariant

• ↑U : via synchronization offered by the memory model

	An introduction to weak-memory concurrency
	Verifying SC concurrent programs with Concurrent Separation Logic
	Verifying Multicore OCaml programs with Cosmo
	Case study: a multiple-producer multiple-consumer queue
	Conclusion
	Appendix

