Cosmo: a concurrent separation logic for the
weak memory model of Multicore OCaml

Glen Mével

PhD defense
December 14, 2022

LMF & Inria Paris

An introduction to weak-memory
concurrency

Movix

Family Cosmo shares a Movix account

A Cloum stinpf g 8

IT°S A CRIME.

Movix' policy: simultaneous accesses = account canceled

Movix

Family Cosmo shares a Movix account

Movix" policy: simultaneous accesses => account canceled

Solution: Family Cosmo has established a protocol: Ay

e a totem in the living room, that anyone can borrow

e to watch Movix, one must have borrowed the totem

c
.
(2}
=
O
X
(S
—
S
4+
S
S
>
0
P

Movix password

Family Cosmo’s members can change the password

Movix password

Family Cosmo’s members can change the password

A CCoum oTe At G,

IT'S A CRIME.

Movix password

Family Cosmo’s members can change the password

A CCoum oTe At G,

IT'S A CRIME.

NN

Alice had changed the password the day before, Bob didn't know

Movix password

Family Cosmo’s members can change the password

A CCoum oTe At G,

IT'S A CRIME.

Alice had changed the password the day before, Bob didn't know

Movix" security policy: wrong password = IP blocked 3

Movix: takeaway

Mutual exclusion is not enough
Alice and Bob have diverging views of their common password

Alice must transmit her (more up-to-date) knowledge to Bob

Movix: takeaway

Mutual exclusion is not enough
Alice and Bob have diverging views of their common password
Alice must transmit her (more up-to-date) knowledge to Bob

Solution: write the password on the totem

Weak memory models

Weak memory models:
multicore architecture, shared memory
each thread has its own view of the state of the shared memory

e example: C11
e example: Java

e example: Multicore OCaml (“OCaml 5")

[Dolan et al, PLDI 2018, Bounding data races in space and time]

Weak memory models

Weak memory models:
multicore architecture, shared memory
each thread has its own view of the state of the shared memory

e example: C11
e example: Java

o example: Multicore OCaml (“OCaml 5")

[Dolan et al, PLDI 2018, Bounding data races in space and time]

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

e losing a paid Movix account
e killing patients: Therac-25 radiotherapy machine

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

e losing a paid Movix account
e killing patients: Therac-25 radiotherapy machine

How to improve confidence in software?

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

e losing a paid Movix account
e killing patients: Therac-25 radiotherapy machine

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

e losing a paid Movix account
e killing patients: Therac-25 radiotherapy machine

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one

My aim:

e verifying
e fine-grained concurrent programs

e in the setting of Multicore OCaml

My contributions:

e Cosmo, a concurrent separation logic with views [ICFP 2020]

e case studies: locks [ICFP 2020], concurrent queue [ICFP 2021]

Verifying SC concurrent programs
with Concurrent Separation Logic

Specifying a program

Hoare triple: {Pre} e {Post}

e e: program code
e Pre: precondition (logical assertion about the computer state)

e Post: postcondition (ditto)

“If we run e from a state that satisfies Pre, and if it terminates,
then it ends in a state that satisfies Post.”

Specifying with Separation Logic

Hoare triple: {Pre} e {Post}

e e: program code
e Pre: precondition (logical assertion about the computer state)

e Post: postcondition (ditto)

“If we run e from a state that satisfies Pre, and if it terminates,
then it ends in a state that satisfies Post.”

Pre and Post are stated in Separation Logic:

e an assertion represents the ownership of a resource

e the separating conjunction P x @ asserts ownership of two
distinct resources P and @

e in general, P % Px P

Resources and locks

Portions of memory are ownable resources

e example: a~> "azerty"
“Movix account a, whose current password is "azerty""

We can guard such resources by using a lock (like the totem)

Two operations for a lock /k guarding a resource R:

e acquire /k
grants R: we become its unique owner
e release lk
reclaims R: we give it back and stop owning it

Resources and locks

Portions of memory are ownable resources

e example: a~> "azerty"
“Movix account a, whose current password is "azerty""

We can guard such resources by using a lock (like the totem)

Two operations for a lock /k guarding a resource R:

e acquire /k

grants R: we become its unique owner

e release lk
reclaims R: we give it back and stop owning it

Formal specification?

Specification of a lock

if Ik is a lock that guards R, then
acquiring /k assumes nothing and grants R

releasing Ik reclaims R and grants nothing

10

Specification of a lock

isLock 1k R | I if Ik is a lock that guards R, then

{True} acquire 1k {R} acquiring /k assumes nothing and grants R
{R} release 1k {True} releasing lk reclaims R and grants nothing

10

Specification of a lock

isLock 1k R | I if Ik is a lock that guards R, then

{True} acquire 1k {R} acquiring /k assumes nothing and grants R
{R} release 1k {True} releasing lk reclaims R and grants nothing

isLock Ik R is an assertion describing the internal layout of /k

— asserts unique ownership of /k

isLock Ik R | is an Iris invariant containing isLock 'k R

= shares |k among all threads

10

The spin lock

A spin lock implements a lock using a Boolean reference:

let release 1lk = let try_acquire 1k =
1k := false CAS 1k false true

11

The spin lock

A spin lock implements a lock using a Boolean reference:

let release 1lk = let try_acquire 1k =
1k := false CAS 1k false true

Described by this assertion:

isLock k R 2 3b. lk~b * (b=false= R)

11

The spin lock

A spin lock implements a lock using a Boolean reference:

let release 1lk = let try_acquire 1k =
1k := false CAS 1k false true

Described by this assertion:

isLock k R 2 3b. lk~b * (b=false= R)

Specification of operations used by the spin lock:

s |
{XWV } CAS x v1 v

7 -
X =V if ret
{xwv’ } then x~ v * v=1
else x~v

11

Verifying the spin lock in Concurrent Separation Logic

isLock k R 2 3b. lk~b * (b=false= R)

(Lock Kk R + Lock Kk R +

// release: // try_acquire:
{R} {True}

lk .= false CAS lk false true
{True}

{(ret = true = R)} 12

Verifying the spin lock in Concurrent Separation Logic

isLock k R 2 3b. lk~b * (b=false= R)

// release: // try_acquire:
{isLock k R * R} {isLock Ik R}
lk .= false CAS lk false true

{isLock lk R}

{isLock k R * (ret =true = R)} 12

Verifying the spin lock in Concurrent Separation Logic

isLock k R 2 3b. lk~b * (b=false= R)

// release: // try_acquire:
{isLock k R * R} {isLock Ik R}
{lk ~ _ x R} {lk~b % (b= false = R)}
lk .= false CAS lk false true
{lk ~ false * R} if ret
{isLock lk R} then lk ~> true * R
else |k~ b x (b= false = R)
if ret

then isLock k R * R
else isLock Ik R

{isLock k R * (ret =true = R)} 19

Verifying Multicore OCaml programs
with Cosmo

Using a lock

Example of using a lock lk to guard accesses to pw:

initially, pw = 0
initially, 1k = false
acquire 1k
pw =1 acquire 1k
release 1k B := lpw

release 1k

13

Using a lock

Example of using a lock lk to guard accesses to pw:

initially, pw = 0
initially, 1k = false
acquire 1k
pw =1 acquire 1k
release 1k B := lpw

release 1k

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

pw =1 acquire 1k

release 1k B := lpw

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

I
—
=
I

'1k
'pw

pw
1k :

false || B :

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

I
—
=
I

'1k
'pw

pw
1k :

false || B :

Possible (A, B): (true, 1), (true, 0), (false, 1)

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

Il
—_
]

'1k
fals = lpw

pw
1k :

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

Il
—_
]

'1k
fals = lpw

pw
1k :

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

pw =1 A = 11k
1k := false&mB := !pw

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

Il
—_
=

]

'1k
'pw

pw
1k :

false

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

Il
—_
=

]

'1k
'pw

pw
1k :

false

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

pw =1 A = 11k
1k := false=mB := !pw

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

I
—
=
I

'1k
'pw

pw
1k :

false || B :

Possible (A, B): (true, 1), (true, 0), (false, 1)

Traditional model of concurrency: interleavings

13

Passing a message in Multicore OCaml

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

I
—
=
I

'1k
'pw

pw
1k :

false || B :

Possible (A, B): (true, 1), (true, 0), (false, 1), (false, 0)

Traditional model of concurrency violated

13

Passing a message in Multicore OCaml

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, 1k = true

i
~
=
i

'1k
'pw

pw
1k :

false || B :

Possible (A, B): (true, 1), (true, 0), (false, 1), (false, 0)
Traditional model of concurrency violated

e hardware optimizations (e.g. buffering writes)

e compiler optimizations (e.g. reordering independent writes)

13

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et all
In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread's view

e example: pw ~~ "azerty"

14

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et all
In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread's view

e example: pw ~~ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

14

The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et all
In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread's view

e example: pw ~~ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock's resource R might be subjective,
so cannot be put in an invariant as we did

14

Synchronization through atomic references

The left thread must transmit its view to the right thread
— need for a synchronization mechanism

15

Synchronization through atomic references

The left thread must transmit its view to the right thread
— need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, 1k :={at} true
A := '{at} 1k
B := !'pw

pw := 1
1k :={at} false

15

Synchronization through atomic references

The left thread must transmit its view to the right thread
— need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, 1k :={at} true
A := '{at} 1k
B := !'pw

pw := 1
1k :={at} false

Specification of atomic references?

15

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

o X~y (v,U)
“x stores the value v and a view (at least) U"
e this assertion is objective

e reasoning rules (sample):

{Xwat (v,Z/{)*TL{’} {Xwat (vi,U) }
X =at V' CAS x vi v

{xwat(v’,u/) } {ret:true*xwat(V2,L{)* TZ/I}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

views

In Cosmo: [ICFP 2020 . . :
Cosmo: |] views are mathematical objects;

o x g (v,U) they enjoy a lattice structure

“x stores the value v and a view (at least) U"
e this assertion is objective

e reasoning rules (sample):

{Xwat (v,Z/{)*TL{’} {Xwat (vi,U) }
X =at V' CAS x vi v

{xwat(v’,u/) } {ret:true*xwat(V2,L{)* TZ/I}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

o X~y (v,U)
“x stores the value v and a view (at least) U"
e this assertion is objective

e reasoning rules (sample):

{Xwat (v,Z/{)*TL{’} {Xwat (vi,U) }
X =at V' CAS x vi v

{xwat(v’,u/) } {ret:true*xwat(V2,L{)* TZ/I}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

o X~y (v,U)

“x stores the value v and a view (at least) "

e this assertion is objective current view
e reasoning rules (sample): U : "the current view contains U
{Xwat (v,Z/{)*TL{’} {Xwat (vi,U) }
X = V| CAS x vi »»

{xwat(v’,u/) } {ret:true*xwat(V2,L{)* TZ/I}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

o X~y (v,U)

“x stores the value v and a view (at least) "

e this assertion is objective current view
e reasoning rules (sample): U : "the current view contains U
{xwat (v,Z/{)*TL{’} {Xwat (vi,U) }
0 /
X =at V releaseCAS X ViV

{x wat(v’,u/f/ } {ret:true*xwat(V2,L{)* TZ/I}

16

Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

o X~y (v,U)

“x stores the value v and a view (at least) "

e this assertion is objective current view
e reasoning rules (sample): U : "the current view contains U
{xwat (v,Z/{)*TL{’} X ~rat (v, U

X =a V CAS x vi »»

{x ~at (VU } {ret:true*xwat (vz,U)XTU}

16

The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference:

let release 1k = let try_acquire 1lk =
1k :={at} false CAS 1k false true

Described by this assertion:

isLocklk R 2 3b . lkwa b % (b=false= R)

17

The spin lock in Multicore OCaml

let release 1k
1k

A spin lock implements a lock using an atomic Boolean reference:

let try_acquire 1k
:={at} false

CAS 1k false true
Described by this assertion:

isLock k R 2 3b . lk~y b

* (b=false= R
R may be subjective!

)

17

The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference

let release 1k
1k

let try_acquire 1k
:={at} false

CAS 1k false true
Described by this assertion:

isLock lk R £

3b,U. lk~ae(b,U) * (b= false = ROU)
R may be subjective!

objective part of an assertion
RO@U : "R where the current view is fixed to U

17

Verifying the spin lock in Multicore OCaml

isLock k R 2 3b,U. lk~ar(b,U) * (b= false = ROU)

// release: // try_acquire:
{ isLock Ik R« R} {isLock Ik R}
{ lk ~a %R} {lk ~>at (b,U) * (b= false = RQU)}
——
{HU. Ik ~n *TU*RO M} CAS lk false true
if ret
ki=a false then /k ~~¢ (true,U) * TU* ROU
{ lk ~~qat (false,U) x RQU} —
{ isLock Ik R} 63 o
if ret
splitting rule then isLock /k R * R
P 3JU. POU * tU else ...
objective Sque\’c;\,e {isLock Ik R x (ret = true = R)}

18

Methodology

A method for proving correctness under weak memory:

1. Start with the invariant under sequential consistency;
2. Identify how information flows between threads;

e i.e. where are the synchronization points;

3. Refine the invariant with corresponding views.

19

Case study: a multiple-producer
multiple-consumer queue

A MPMC queue

case study: [ICFP 2021]
specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [iris, 2015; ICFP 2021]

20

A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue

in the weak memory model of Multicore OCaml

challenges:

1.

shared ownership
tool: logical atomicity (not in this talk) [iris, 2015; ICFP 2021]

. need to specify thread synchronization

tool: views [ICFP 2020]

20

A MPMC queue

case study: [ICFP 2021]
specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

e fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20

A specification for concurrent queues in SC

<n, VOy vy Vn—1. ISQueue q [vo, ..., vn,1]>

enqueue q Vv

<)\(). IsQueue g [vo, ..., Vn—1, V] >
<n, VO, -y Vn—1. IsSQueue ¢ [vo, ..., V1] >
dequeue q

<)\v. IsQueue g [vi,...,va—1] * 1<n % v= v0>

21

A specification for concurrent queues in SC

<n, VOy vy Vn—1. ISQueue q [vo, ..., vn,1]>

enqueue q Vv

<)\(). IsQueue g [vo, ..., Vn—1, V] >
<n, VO, -y Vn—1. IsSQueue ¢ [vo, ..., V1] >
dequeue q

<)\v. IsQueue g [vi,...,va—1] * 1<n % v= v0>

e IsQueue q [vp, ..., vp—1] is exclusive

= must be shared through an invariant

21

A specification for concurrent queues in SC

<n. Vo, ooy V1. IsQueue q [w, ..., vn,1]>

enqueue q Vv

<)\(). IsQueue g [vo, ..., Vn—1, V] >
<n, Vo, ey V1. IsQueue g [vo, ..., Vn—1] >
dequeue q

<)\v. IsQueue g [vi,...,va—1] * 1<n % v= v0>

e IsQueue q [vp, ..., vp—1] is exclusive

= must be shared through an invariant

21

A specification for concurrent queues in SC

<n, VOy vy Vn—1. ISQueue q [vo, ..., vn,1]>

enqueue q Vv

<)\(). IsQueue g [vo, ..., Vn—1, V] >
<n, VO, -y Vn—1. IsSQueue ¢ [vo, ..., V1] >
dequeue q

<)\v. IsQueue g [vi,...,va—1] * 1<n % v= v0>

e IsQueue q [vp, ..., vp—1] is exclusive

= must be shared through an invariant

21

A specification for concurrent queues in weak memory

<n, Vo ey Vet >
IsQueue g [vp sy Vpo1 |
enqueue q v
(AO.1sQueve g [vo .y V1 v)
n, v vy Vno1 .
< IsQueue g [vo , v sy V1] >
dequeue g
<)\v. IsQueue g [v S VA | *x 1<nxv= v0>

e IsQueue q [vo, ..., Vo—1] is exclusive
= must be shared through an invariant

22

A specification for concurrent queues in weak memory

<n, Vo ey Vet >
IsQueue g [vp sy Vpo1 |
enqueue q v
(AO.1sQueve g [vo .y V1 v)
n, v vy Vno1 .
< IsQueue g [vo , v sy V1] >
dequeue g
<)\v. IsQueue g [v S VA | *x 1<nxv= v0>

e IsQueue q [vo, ..., Vo—1] is exclusive
= must be shared through an invariant
— must be objective

22

A specification for concurrent queues in weak memory

<n, Vo ey Vet >
IsQueue g [vp sy Vpo1 |
enqueue q v
(AO.1sQueve g [vo .y V1 v)
n, v vy Vno1
< IsQueue g [vo , v sy V1] >
dequeue g
<)\v. IsQueue g [v S VA | *x 1<nxv= v0>

e IsQueue q [vo, ..., Vo—1] is exclusive
= must be shared through an invariant
— must be objective
e The queue transfers resources = must transfer views 29

A specification for concurrent queues in weak memory

n, (vo, Vo), -5 (Vn—1, Va—1)-
IsQueue g [(v0, Vo), --s (Va—1, Vn—1)] * TV
enqueue q Vv
<A() IsQueue q [(V07 VO)7 e (Vn—la Vn—l)a (V> V)] >
n, (V07 VO); 000 (Vn—17 Vn—l)-
IsQueue g [(vo, Vo), (v1, V1), s (Va—1, Vn—1)]
dequeue g

<)\v. IsQueue g [(v1, V1), ooy (Va—1,Vn-1)] * TVo * 1< n % v= v0>

e IsQueue q [vo, ..., Vn—1] is exclusive
= must be shared through an invariant
— must be objective
e The queue transfers resources = must transfer views 29

A specification for concurrent queues in weak memory

n, (VOa VO)? 000 (anla anl)-
|SQU€U€ q [(VO,VO), ooog (anlavnfl)] * TV

enqueue q Vv

(1O IsQueue q [(v0, Vo), - (va-1, Va-1), (v, VI)

n, (V07 VO); ceey (Vn—17 Vn—l)-
IsQueue g [(vo, Vo), (vi, V1), ey (Va—1, Vn—1)]
dequeue g

<)\v. IsQueue g [(v1, V1), ooy (Va—1,Vn-1)] * TVo * 1< n % v= v0>

e IsQueue q [vo, ..., Vn—1] is exclusive
= must be shared through an invariant
— must be objective
e The queue transfers resources = must transfer views 29

A specification for concurrent queues in weak memory

n, (vo, Vo), -5 (Vn—1, Va—1)-
IsQueue g [(v0, Vo), --s (Va—1, Vn—1)] * TV
enqueue q v
<A() IsQueue q [(V07 VO)7 e (Vn—la Vn—l)a (V> V)] >
n, (V07 VO); 000 (Vn—17 Vn—l)-
IsQueue g [(vo, Vo (1, V1), -5 (Va—1, V—1)]
dequeue g

<)\v. IsQueue g [(v1, V1), oy (Va—1, Vn—1)] * T% x 1<nxv= v0>

e IsQueue q [vo, ..., Vn—1] is exclusive
= must be shared through an invariant
— must be objective
e The queue transfers resources = must transfer views 29

Comparison with refinement in weak memory

Refinement is another approach to specifying the queue:
“this queue can replace a sequential queue guarded by a lock”

Shortcoming of the refinement spec:
the lock induces synchronization between all operations

23

Comparison with refinement in weak memory

Refinement is another approach to specifying the queue:
“this queue can replace a sequential queue guarded by a lock”

Shortcoming of the refinement spec:
the lock induces synchronization between all operations

Our spec is more permissive:

no guaranteed synchronization from dequeuer to enqueuer

Allows for more relaxed implementations... like the one we verified

23

Conclusion

Contributions

e BaseCosmo: A low-level program logic for the weak memory
model of Multicore OCaml [ICFP 2020]

e closely reflects the operational semantics

e Cosmo: A higher-level logic, based on a notion of views
[ICFP 2020]

e casier to use, cannot reason about racy programs

e Verification of locks and mutual exclusion algorithms [ICFP 2020]
e Specification and verification of a non-trivial lock-free queue
[ICFP 2021]
e demonstrates the expressivity of Cosmo
e methodology: add views wherever synchronization is relevant

l)

e Mechanized in Coq (Iris) 9

24

The logic of views enables concise and natural reasoning about how
threads synchronize

Enables fine-grained specifications
Don't hide views: make them apparent in specifications!
Prove specifications with the splitting rule

Fits naturally into a Hoare/Concurrent Separation Logic framework

25

Model of the logic in Iris

Assertions are predicates on views:
vProp £ view — iProp
TUg 2 NU. Uy T U
PxQEXNI.PUxQU
P+Q=XA. PU-xQU
We equip a language-with-view with an operational semantics:
exprWithView £ expr x view
Iris builds a WP calculus for exprWithView in iProp.
We derive a WP calculus for expr in vProp and prove adequacy:
WP e o2 N/ .
validid -« WP (e, i) (A{v,U").validU' ¢ vU')

where ¢ : val — vProp

Model of the logic in Iris

Assertions are monotonic predicates on views:
vProp £ view ™% iProp
TUg 2 NU. Uy T U
PxQEXNI.PUxQU
PxQEXN4L. VU U PU*QU
We equip a language-with-view with an operational semantics:
exprWithView £ expr x view
Iris builds a WP calculus for exprWithView in iProp.
We derive a WP calculus for expr in vProp and prove adequacy:
WP e ¢ 2 N4y YU 3 Uy.
validid -« WP (e, i) (A{v,U").validU' ¢ vU')

where ¢ : val — vProp

Model of the logic in Iris

Assertions are monotonic predicates on views:
vProp £ view ™% iProp
TUg 2 NU. Uy T U
PxQEXNI.PUxQU
PxQEXN4L. VU U PU*QU
We equip a language-with-view with an operational semantics:
exprWithView £ expr x view
Iris builds a WP calculus for exprWithView in iProp.
We derive a WP calculus for expr in vProp and prove adequacy:
WP e ¢ 2 N4y YU 3 Uy.
validi -« WP (e, i) (A{v,U").validU ¢ vU')

where ¢ : val — vProp

Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{X“’“’naV*P }
/
X =pa V

{/\() X ~opg V ok P}

Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{x ~>na V * P — holds at the thread's current view }

/
X =pa V

{/\() X ~na V' % P — holds at the thread’s now extended vievv}

Key idea: decomposing subjective assertions

Decompose subjective assertions:

P<—3dU. POU x TU
—~— ~~

objective gy bjective

POU — U P

Share parts via distinct mechanisms:

e P QU : via an objective invariant

e TU : via synchronization offered by the memory model

Key idea: decomposing subjective assertions

Decompose subjective assertions:

P+ JU. POU * TU
N——" \ ,

objective gy bjective
P QU <= Objectively(TU — P)
Objectively Q <= (VU. QQU) — Q QU

Share parts via distinct mechanisms:

e P QU : via an objective invariant

e TU : via synchronization offered by the memory model

	An introduction to weak-memory concurrency
	Verifying SC concurrent programs with Concurrent Separation Logic
	Verifying Multicore OCaml programs with Cosmo
	Case study: a multiple-producer multiple-consumer queue
	Conclusion
	Appendix

