
Cosmo: a concurrent separation logic for the
weak memory model of Multicore OCaml

Glen Mével

PhD defense
December 14, 2022

LMF & Inria Paris



An introduction to weak-memory
concurrency



Movix

Family Cosmo shares a Movix account

Movix’ policy: simultaneous accesses =⇒ account canceled

Solution: Family Cosmo has established a protocol:

• a totem in the living room, that anyone can borrow

• to watch Movix, one must have borrowed the totem
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Movix: mutual exclusion
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Movix password

Family Cosmo’s members can change the password

One day...

Alice had changed the password the day before, Bob didn’t know

Movix’ security policy: wrong password =⇒ IP blocked
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Movix: takeaway

Mutual exclusion is not enough

Alice and Bob have diverging views of their common password

Alice must transmit her (more up-to-date) knowledge to Bob

Solution: write the password on the totem
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Weak memory models

Weak memory models:
multicore architecture, shared memory
each thread has its own view of the state of the shared memory

• example: C11

• example: Java

• example: Multicore OCaml (“OCaml 5”)
[Dolan et al, PLDI 2018, Bounding data races in space and time]
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Program verification

Programming is error-prone... Concurrent programming even more!

Some bugs might have catastrophic consequences

• losing a paid Movix account

• killing patients: Therac-25 radiotherapy machine

• ...

How to improve confidence in software?

Specify it:
state the expected behavior of a program in mathematical terms

Verify it:
prove that the actual behavior matches the expected one
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This work

My aim:

• verifying

• fine-grained concurrent programs

• in the setting of Multicore OCaml

My contributions:

• Cosmo, a concurrent separation logic with views [ICFP 2020]

• case studies: locks [ICFP 2020], concurrent queue [ICFP 2021]
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Verifying SC concurrent programs
with Concurrent Separation Logic



Specifying a program [Hoare, 1969]

Hoare triple: {Pre} e {Post}

• e: program code
• Pre: precondition (logical assertion about the computer state)
• Post: postcondition (ditto)

“If we run e from a state that satisfies Pre, and if it terminates,
then it ends in a state that satisfies Post.”

Pre and Post are stated in Separation Logic:

• an assertion represents the ownership of a resource
• the separating conjunction P ∗ Q asserts ownership of two

distinct resources P and Q

• in general, P ̸⇒ P ∗ P
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Resources and locks

Portions of memory are ownable resources

• example: a⇝ "azerty"
“Movix account a, whose current password is "azerty"”

We can guard such resources by using a lock (like the totem)

Two operations for a lock lk guarding a resource R :

• acquire lk

grants R : we become its unique owner

• release lk

reclaims R : we give it back and stop owning it

Formal specification?
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Specification of a lock

isLock lk R ⊢

if lk is a lock that guards R , then

{True} acquire lk {R}

acquiring lk assumes nothing and grants R

{R} release lk {True}

releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10



Specification of a lock

isLock lk R ⊢ if lk is a lock that guards R , then{True} acquire lk {R} acquiring lk assumes nothing and grants R

{R} release lk {True} releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10



Specification of a lock

isLock lk R ⊢ if lk is a lock that guards R , then{True} acquire lk {R} acquiring lk assumes nothing and grants R

{R} release lk {True} releasing lk reclaims R and grants nothing

isLock lk R is an assertion describing the internal layout of lk
=⇒ asserts unique ownership of lk

isLock lk R is an Iris invariant containing isLock lk R

=⇒ shares lk among all threads

10



The spin lock

A spin lock implements a lock using a Boolean reference:

let release lk =
lk := false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

Specification of operations used by the spin lock:

{x ⇝ v }
x := v ′

{x ⇝ v ′ }

{x ⇝ v }
CAS x v1 v2

{if retthen x ⇝ v2 ∗ v = v1

else x ⇝ v
}
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Verifying the spin lock in Concurrent Separation Logic [Iris, 2015]

isLock lk R ≜ ∃b. lk ⇝ b ∗ (b = false ⇒ R)

isLock lk R ⊢
// release:
{R}

{lk ⇝_ ∗ R}

lk := false

{lk ⇝ false ∗ R}

{True}

isLock lk R ⊢
// try_acquire:
{True}

{lk ⇝ b ∗ (b = false ⇒ R)}

CAS lk false true


if ret

then lk ⇝ true ∗ R

else lk ⇝ b ∗ (b = false ⇒ R)


if ret

then isLock lk R ∗ R

else isLock lk R



{(ret = true ⇒ R)}
12
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Verifying Multicore OCaml programs
with Cosmo



Using a lock

Example of using a lock lk to guard accesses to pw :

initially, pw = 0
initially, lk = false

acquire lk
pw := 1 acquire lk
release lk B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1)

, (false, 0)

Traditional model of concurrency: interleavings

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)
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Passing a message in Multicore OCaml

Passing a write to pw from the left thread to the right thread:

initially, pw = 0
initially, lk = true

acquire lk

pw := 1 A := !lk
lk := false B := !pw

release lk

Possible (A, B): (true, 1), (true, 0), (false, 1), (false, 0)

Traditional model of concurrency violated

• hardware optimizations (e.g. buffering writes)

• compiler optimizations (e.g. reordering independent writes)
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The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14



The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14



The essence of weak memory: subjectivity

Weak memory: each thread has its own view of memory [Dolan et al]

In Cosmo: [ICFP 2020]

Some assertions are subjective: they depend on the thread’s view

• example: pw ⇝ "azerty"

Invariants are objective:
because they are available to all threads
they cannot share subjective assertions

The lock’s resource R might be subjective,
so cannot be put in an invariant as we did

14



Synchronization through atomic references

The left thread must transmit its view to the right thread
=⇒ need for a synchronization mechanism

In Multicore OCaml: atomic references [Dolan et al]

initially, pw := 0
initially, lk :={at} true

pw := 1 A := !{at} lk
lk :={at} false B := !pw

Specification of atomic references?
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Atomic references

Semantics of an atomic reference: [Dolan et al]

1. stores a value on which all threads agree at any point in time
2. achieves release/acquire synchronization

In Cosmo: [ICFP 2020]

• x ⇝at (v ,U)
“x stores the value v and a view (at least) U”

• this assertion is objective
• reasoning rules (sample):

{x ⇝at (v ,U) ∗ ↑U ′}
x :=at v

′

{x ⇝at (v
′,U ′) }

{x ⇝at (v1,U) }
CAS x v1 v2

{ret = true ∗ x ⇝at (v2,U) ∗ ↑U}
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views
views are mathematical objects;

they enjoy a lattice structure
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Atomic references

Semantics of an atomic reference: [Dolan et al]
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The spin lock in Multicore OCaml

A spin lock implements a lock using an atomic Boolean reference:

let release lk =
lk :={at} false

let try_acquire lk =
CAS lk false true

Described by this assertion:

isLock lk R ≜ ∃b

,U

. lk⇝at b ∗ (b = false ⇒ R

@U

)

R may be subjective!
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objective part of an assertion

R @ U : “R where the current view is fixed to U”
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Verifying the spin lock in Multicore OCaml

isLock lk R ≜ ∃b,U . lk⇝at(b,U) ∗ (b = false ⇒ R@U)

// release:
{ isLock lk R ∗ R}
{ lk ⇝at _ ∗ R}{
∃U . lk ⇝at _ ∗

︷ ︸︸ ︷
↑U ∗ R @ U

}
lk :=at false
{ lk ⇝at (false,U) ∗ R @ U}
{ isLock lk R}

// try_acquire:
{isLock lk R}
{lk ⇝at (b,U) ∗ (b = false ⇒ R @ U)}
CAS lk false true
if ret

then lk ⇝at (true,U) ∗ ↑U ∗ R @ U︸ ︷︷ ︸
else . . .


if ret

then isLock lk R ∗ R

else . . .


{isLock lk R ∗ (ret = true ⇒ R)}

splitting rule

P ⇐⇒ ∃U . P @ U︸ ︷︷ ︸
objective

∗ ↑U︸︷︷︸
subjective

18



Methodology

A method for proving correctness under weak memory:

1. Start with the invariant under sequential consistency;

2. Identify how information flows between threads;
• i.e. where are the synchronization points;

3. Refine the invariant with corresponding views.
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Case study: a multiple-producer
multiple-consumer queue



A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20



A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20



A MPMC queue

case study: [ICFP 2021]

specifying and verifying a fine-grained concurrent queue
in the weak memory model of Multicore OCaml

challenges:

1. shared ownership
tool: logical atomicity (not in this talk) [Iris, 2015; ICFP 2021]

2. need to specify thread synchronization
tool: views [ICFP 2020]

• fine-grained specification, more permissive than lock-based

non-trivial implementation taking profit from the relaxed spec

20



A specification for concurrent queues in SC

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue q [v0, ..., vn−1, v ] ⟩

⟨n, v0, ..., vn−1. IsQueue q [v0, ..., vn−1] ⟩
dequeue q

⟨λv . IsQueue q [v1, ..., vn−1] ∗ 1 ≤ n ∗ v = v0⟩

• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant
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A specification for concurrent queues in weak memory

⟨n, v0 , ..., vn−1 .

IsQueue q [ v0 , ..., vn−1 ]

∗ ↑ V

⟩
enqueue q v

⟨λ(). IsQueue q [ v0 , ..., vn−1 , v ] ⟩

⟨n, v0 , ..., vn−1 .

IsQueue q [ v0 , v1 , ..., vn−1 ] ⟩
dequeue q

⟨λv . IsQueue q [ v1 , ..., vn−1 ]

∗ ↑ V0

∗ 1 ≤ n ∗ v = v0⟩
• IsQueue q [v0, ..., vn−1] is exclusive
=⇒ must be shared through an invariant

=⇒ must be objective
• The queue transfers resources =⇒ must transfer views
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Comparison with refinement in weak memory

Refinement is another approach to specifying the queue:
“this queue can replace a sequential queue guarded by a lock”

Shortcoming of the refinement spec:
the lock induces synchronization between all operations

Our spec is more permissive:
no guaranteed synchronization from dequeuer to enqueuer

Allows for more relaxed implementations... like the one we verified
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Conclusion



Contributions

• BaseCosmo: A low-level program logic for the weak memory
model of Multicore OCaml [ICFP 2020]

• closely reflects the operational semantics

• Cosmo: A higher-level logic, based on a notion of views
[ICFP 2020]

• easier to use, cannot reason about racy programs

• Verification of locks and mutual exclusion algorithms [ICFP 2020]

• Specification and verification of a non-trivial lock-free queue
[ICFP 2021]

• demonstrates the expressivity of Cosmo
• methodology: add views wherever synchronization is relevant

• Mechanized in Coq (Iris)
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Takeaways

The logic of views enables concise and natural reasoning about how
threads synchronize

Enables fine-grained specifications

Don’t hide views: make them apparent in specifications!

Prove specifications with the splitting rule

Fits naturally into a Hoare/Concurrent Separation Logic framework
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Model of the logic in Iris

Assertions are predicates on views:

vProp ≜ view −→ iProp

↑U0 ≜ λU . U0 ⊑ U
P ∗ Q ≜ λU . P U ∗ Q U

P −∗ Q ≜ λU .

∀U ⊒ U1.

P U −∗ Q U

We equip a language-with-view with an operational semantics:

exprWithView ≜ expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e φ ≜ λU .

∀U ⊒ U1.

validU −∗ WP ⟨e,U⟩
(
λ
〈
v ,U ′〉 . validU ′ ∗ φ v U ′)

where φ : val → vProp
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Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{x ⇝na v ∗ P }
x :=na v ′

{λ(). x ⇝na v
′ ∗ P}



Assertions are monotonic

Subjective assertions are monotonic w.r.t. the thread’s view.

One reason is the frame rule:

{x ⇝na v ∗ P — holds at the thread’s current view }
x :=na v ′

{λ(). x ⇝na v
′ ∗ P — holds at the thread’s now extended view}



Key idea: decomposing subjective assertions

Decompose subjective assertions:

P ⇐⇒ ∃U . P @ U︸ ︷︷ ︸
objective

∗ ↑U︸︷︷︸
subjective

P @ U =⇒ Objectively(↑U −∗ P)

ObjectivelyQ ⇐⇒ (∀U . Q @ U) ⇐⇒ Q @∅

Share parts via distinct mechanisms:

• P @ U : via an objective invariant

• ↑U : via synchronization offered by the memory model
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